Creation of a selective antagonist and agonist of the rat VPAC(1) receptor using a combinatorial approach with vasoactive intestinal peptide 6-23 as template.

نویسندگان

  • J W Tams
  • R M Jorgensen
  • A Holm
  • J Fahrenkrug
چکیده

We have used combinatorial chemistry with amino acid mixtures (X) at positions 6 to 23 in vasoactive intestinal peptide (VIP) to optimize binding affinity and selectivity to the rat VPAC(1) receptor. The most efficient amino acid replacement was a substitution of alanine at position 18 to diphenylalanine (Dip), increasing the displacement efficiency of (125)I-VIP by 370-fold. The [Dip(18)]VIP(6-23) was subsequently used to find a second replacement, employing the same approach. Tyrosine at position 9 was selected and the resulting [Tyr(9),Dip(18)]VIP(6-23) analog has a K(i) value of 90 nM. This analog was unable to stimulate cAMP production at 10(-6) M but was able to inhibit VIP-induced cAMP stimulation (K(b) = 79 nM). The K(i) values of [Tyr(9),Dip(18)]VIP(6-23) using the rat VPAC(2) and PAC(1) receptors were 3,000 nM and >10,000 nM, respectively. Thus, [Tyr(9),Dip(18)]VIP(6-23) is a selective VPAC(1) receptor antagonist. The C-terminally extended form, [Tyr(9),Dip(18)]VIP(6-28), displays improved antagonistic properties having a K(i) and K(b) values of 18 nM and 16 nM, respectively. On the contrary, the fully extended form, [Tyr(9),Dip(18)]VIP(1-28), was a potent agonist with improved binding affinity (K(i) = 0.11 nM) and ability to stimulate cAMP (EC(50) = 0.23 nM) compared with VIP (K(i) = 1.7 nM, EC(50) = 1.12 nM). Furthermore, the specificity of this agonist to the VPAC(1) receptor was high, the K(i) values for the VPAC(2) and PAC(1) receptors were 53 nM and 3,100 nM, respectively. Seven other analogs with the [Tyr(9),Dip(18)] replacement combined with previously published VIP modifications have been synthesized and described in this work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vasoactive intestinal peptide has a direct positive inotropic effect on isolated human myocardial trabeculae.

The aim of the present study was to assess the inotropic effects of vasoactive intestinal peptide (VIP) on isolated myocardial trabeculae from the right atrium and the left ventricle of human hearts. Furthermore, using reverse transcriptase-PCR, we wanted to determine the presence of mRNAs encoding the three cloned human VIP receptors, VPAC(1), VPAC(2) and PAC(1). The trabeculae were paced at 1...

متن کامل

Effect of an Antagonist of Vasoactive Intestinal Polypeptide on Biological Rhythm of Rest Activity in the Rat

Abstract Vasoactive Intestinal Polypeptide (VIP), has been found in different neurotransmitter systems and exists in various nerve tracts in the brain. Potential role of this peptide in physiological processes such as regulation of sleep and wakefulness, and biological rhythms has been confirmed in several reports. In the present research effects of intracerebroventricular (ICV) injection of a...

متن کامل

Identification and characterization of a small molecule antagonist of human VPAC(2) receptor.

The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) and their class II G protein-coupled receptors VPAC(1), VPAC(2), and PAC(1) play important roles in human physiology. No small molecule modulator has ever been reported for the VIP/PACAP receptors, and there is a lack of specific VPAC(2) antagonists. Via high-throughput screening of ...

متن کامل

Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and guinea pig.

Vasoactive intestinal peptide (VIP) is a neurotransmitter involved in a number of pathological and physiological processes. VIP is rapidly degraded and simplified stable analogs are needed. VIP's action was extensively studied in rat and guinea pig. However, it is largely unknown whether its pharmacophore in these species resembles human. To address this issue we investigated the VIP pharmacoph...

متن کامل

Antagonistic actions of analogs related to growth hormone-releasing hormone (GHRH) on receptors for GHRH and vasoactive intestinal peptide on rat pituitary and pineal cells in vitro.

Peptide analogs of growth hormone-releasing hormone (GHRH) can potentially interact with vasoactive intestinal peptide (VIP) receptors (VPAC(1)-R and VPAC(2)-R) because of the structural similarities of these two hormones and their receptors. We synthesized four new analogs related to GHRH (JV-1-50, JV-1-51, JV-1-52, and JV-1-53) with decreased GHRH antagonistic activity and increased VIP antag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 58 5  شماره 

صفحات  -

تاریخ انتشار 2000